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Monitoring of fault zone processes at all scales 

mm-scale
~Laboratory

m-scale
~Induced seismicity

km-scale
~Natural earthquakes
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Monitoring of fault zone processes at all scales 
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Magnitude -2
A cat falling off a dresser

Magnitude -8
A grain sand falling onto the 

bottom of a tiny hourglass
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In-situ geomechanical lab in Mponeng deep gold mine, South Africa

• 300x300x300m volume of rock at depth of >3500m

• Response of the dyke due to stresses changes (exploitation at the stope level)

Monitoring system

(Kwiatek et al., BSSA, 2010; Plenkers et al., BSSA, 2011)
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MW1.9 „Merry Christmas” earthquake

Normal faulting event in a dyke, 30m from the center of monitoring network

Aftershock sequence of >25000 events with M>-5

(Kwiatek et al., 2010, 2011, BSSA) (↑Naoi et al., BSSA, 2011)
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MW1.9 event

Normal faulting event in a dyke, 30m from the center of monitoring network

Aftershock sequence of >25000 events with M>-5

(Kwiatek et al., 2010, 2011, BSSA) (↑Naoi et al., BSSA, 2011)
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Activity before MW1.9 event

• Steady seismicity rate

• Concentrated mostly around 
tunnel walls

• Persistent low b value in the 
area

Cumulative rate of seismicity 
before MW1.9

b value aftershocks

←b value foreshocks
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Properties of aftershock sequence
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• Follows Omori’s law with p=1.1 
(Plenkers et al., SRL, 2010)

• Follows G-R law with b=1.3 
(Kwiatek et al., BSSA, 2010)

• No significant evidence for magnitude correlations – assumption of independent 
EQ magnitudes for forecasting rates and hazard assessment justified (Davidsen and 

Kwiatek, PRL, 2012)

• Temporal and spatial distribution of aftershocks can be modeled by rate-and-state 
formulation for EQ productivity (Kozłowska et al., JGR, 2014)
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ES/EP < 4.8

Tensile sources

ES/EP = 4.5

Stationary shear 
source

ES/EP > 4.5

Non-stationary 
shear sources

Properties of aftershock sequence
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• Aftershocks on the fault plane (-5.2 < M < -2.4) show distinct signatures of non-DC 
mechanisms (Kwiatek and Ben-Zion, JGR, 2013)
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• Physical and statistical properties of 
the 𝑀𝑊1.9 related fault seismicity 
shows similarities to that observed in 
natural faults

• Analog properties can be observed in 
laboratory experiments on rock 
samples through analysis of acoustic 
emission activity
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Laboratory faults – rough surface sample 
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• Fractured at 75MPa confinement

• Wide damage zone

• Small and large slips resulting in more than 100,000 acoustic emission events

(Kwiatek et al., GRL, 2014; see also Goebel et al., GRL, PAGEOPH 2013)
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Laboratory faults – saw-cut surface sample
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• Saw-cut before stick-slip

• Thin damage zone

• Only large slips resulting in acoustic emission activity

(Kwiatek et al., GRL, 2014; see also Goebel et al., GRL, PAGEOPH 2013)
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Slip history



Example: AE activity and focal mechanisms (saw-cut)
• 1200 AE located, ~1100 MTs calculated

Selected fault planes together with slip vectors
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Lab vs nature: Fault thickness/length
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Rough SawcutMW1.9

x 10-3 scale factor
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Lab vs nature: b value/activity (rough sample)
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Rough sample

IntroductionIn-situ near fault monitoring In-situ vs lab faults Summary

MW1.9 Rough fault Saw-cut fault

thickness
/length

~6% ~20-30% ~4%

b value 
before 
slip(s)

low (1) low (1.1)
n/a 

(bimodal)

b value after 
slip(s)

high (1.3) high (1.4) -

Seismic 
activity

post-slip  
a/f≈70

post-slip 
a/f≈100

pre-slip
a/f<<1

Activity 
before/after

low/high low/high high/-

Activity 
after

p=1.1 p=1.2 -

Aftershock 
mechanisms

Shear
+

Non-shear

Shear
+

Compaction
-

Foreshock
phase 

mechanism
n/a

Compaction
+

Shear
+

Opening

Compaction 
(small M) 

+
Shear 

(large M)

before slips after slips

b
 v

al
u

e

time to stick slips [s]



Lab vs nature: b value/activity (saw-cut rample)
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Summary
• Physical processes generally do not differ significantly 

between laboratory scale and ~60m fault 

• Classical „coulomb” shear failure of a dyke in Mponeng Mine 
lead to aftershock sequence with statistical characteristics 
similar to that observed in smaller and larger scales

• non-DC fault mechanisms abundant in a direct proximity of 
the fault zone, likely hardly recoverable using classical 
networks 

• MW1.9 „fresh” fault characteristics generally analogous to 
rough surface fault in laboratory stick-slip experiment. Is saw-
cut fault an analog of a mature fault zone?

• Maturation of the fault zone visible in both stick-slip 
experiments

• Close-by monitoring essential to understand the processes in 
the fault zone
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Thank you for your attention!

Contact: kwiatek@gfz-potsdam.de
Publications: http://induced.pl/about
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Temporal changes in MT characteristics (saw-cut)
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• AEs display dip-slip faulting

Interslip phase (until 80s before slip):

• Increase in the number of AEs 
displaying non-DC MT components 

Pre-slip phase (80 s before slip – slip):

• Rapid increase in AE events displaying 
high DC components 

Observed long-term changes:

• Decrease of AE activity with 
subsequent stick-slips

• Relative increase in AE events 
displaying high DC components 
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Rough fault
All pre-slip phases
(100s)
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Saw-cut
Pre-slip phases
altogether
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Shear sliding and shear-enhanced compaction (saw-cut)

• Larger AE magnitudes with high DC component observed just before slip phases

• Persistent continuous shear-enhanced compaction expressed in small AEs



AE activity (rough surface)
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• 100,000 AEs located; 42,000 moment 
tensors calculated

• Late stick slip phases investigated 



Temporal changes in MT characteristics (rough surface)
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• Persistent compaction throughout the experiment

• Shear-enhanced compaction after slip

• More small events after slip



Seismic data | Aftershock sequence
• Aftershock activity follows Gutenberg-Richter scaling relation

• b=1.26, Mc=-4.30 for the fault plane (F)

(Kwiatek et al., 2010, Bull. Seism. Soc. Am. 100)

b=1.26

MC=-4.30
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Seismic data | Post-blasting activity
• Post-blasting also follows scaling relations with b=1.16

(Kwiatek et al., 2010, Bull. Seism. Soc. Am. 100)
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